Physics 9-Ch2 (Kinematics)-Numerical Problems

 

A train moves with a uniform velocity of 36 110. Find the distance traveled by it.                                                                                                  (100 m)

Difficulty: Easy

Solution:

Velocity = V = 361 = 36×100060×60 =360003600 = 101
                       Time t = 10 s
                  Distance = S =?
                               S = Vt 
                               S = 10×10 = 100 m 

A train starts from rest. It moves through 1 km in 100 s with uniform acceleration. What will be its speed at the end of 100 s.?   (201)

Difficulty: Easy

Solution:

Initial velocity Vi = 0 1
                           Distance S = 1 km = 1000 m 
                           Time = 100 s
                           Final velocity Vf =?
                           S = ×+12××2
                           1000 = 0×100+12××(100)2
                           1000 = 12×10000 
                           1000 = 5000a 
                             a = 1000/5000 = 0.22


\Now using 1st equation of motion 


                               Vf = Vi + at 
                               Vf = 0+0.2×100 
                               Vf = 201  

A car has a velocity of 101. It accelerates at 0.22 for half a minute. Find the distance traveled during this time and the final velocity of the car. (390,161)

Difficulty: Easy

Solution:           

Initial velocity = Vi = 101 
Acceleration a = 0.2 2
Time t = 0.5 min = 0.5×60 = 30 s 
 
(I) Distance S =?
(II) Final velocity Vf =?
 
       S = ×+12××2
       S=  10×30+12×0.2×(30)2 
       S = 300+12×0.2×90
       S = 300+12×210× 90
       S = 300 + 90
       S = 390 m 
       
(II)Using 1st equation of motion 
Vf = Vi + at 
Vf = 10+0.2×30 
Vf = 10 + 6
Vf = 161
A tennis ball is hit vertically upward with a velocity of 30 

1, it takes 3 s to reach the highest point. Calculate the maximum height reached by the ball. How long it will take to return to the ground? (45 m, 6 s)

Difficulty: Easy

Solution:        

Initial velocity = Vi = 301
Acceleration due to gravity g = 102
Time to reach maximum height = t = 3 s 
 Final velocity Vf = 01


(I)Maximum height attained by the ball S =?
(II)Time taken to return to ground t =?


S = ×+12××2
S = 30×3+12×(10)×(3)2
S = 905×9
S = 90 – 45
S = 45 m 


Total time = time to reach maximum height + time to return to the ground 
= 3 s + 3 s = 6 s

A car moves with a uniform velocity of 40 1 for 5 s. It comes to rest in the next 10 s with uniform deceleration. 

Find:

  1. Deceleration
  2. Total distance traveled by car. (42,400)
Difficulty: Easy

Solution:

Initial velocity = Vi = 40 1 
Time = t = 5 s
Final velocity = Vf = 0 1
Time = 10 s       
                                     
(I) deceleration a =?   
(II)total distance S =?     
 
Vf = Vi + at 
Or   at = Vf - Vi
                           a = 
                           a = 04010
                           a = 42
                    Total distance travelled = S = S1 + S2 
                     By using this relation 
                             S1 = Vt 
                             S1 = 40×5
                             S1 = 200 m ……………………. (i) 
                             
                    Now by using 3rd equation of motion 
                             2aS_2=22
                              S2 = 222  
                              S2 = (0)2(40)2/2×(4)
                              S2 =16008  
                              S2 = 200 m …………………………… (ii)
                              
                    From (i) and (ii) we get;
                    
                              S = S1 + S2 
             Or             S = 200 m + 200 m  
                               S = 400 m  

            

A train starts from rest with an acceleration of 0.5 2. Find its speed in 1, when it has moved through 100 m. (361)

Difficulty: Easy

Solution:         

Initial velocity Vi = 0 1
                         Acceleration a = 0.52
                        Distance S = 100 m 
                        Final velocity Vf =?
                        2aS = 22
                        2×0.5×100=2 – 0
                        Or         100 = 2


Or  

2=1001……………………..(I)
Speed in 1:
From (I) we get; 
Vf = 10×36001000=361

A train starting from rest accelerates uniformly and attains a velocity of 48 

1 in 2 minutes. It travels at this speed for 5 minutes. Finally, it moves with uniform retardation and is stopped after 3 minutes. Find the total distance traveled by train. 

Difficulty: Easy

Solution: 

Case – I:      (6000 m)

Initial velocity = Vi = 01 
Time = t = 2 minutes = 2×60 = 120 s
Final velocity = Vf = 481 = 48×10003600 = 13.333 1 
S1 = × 
S1 =(+)2× t 
S1 = 13.333+02×120 
S1 = 6.6665×120 
S1 = 799.99 m = 800 m 
 
Case – II: 
 
Uniform velocity = Vf = 13.3331
Time = t = 5 minutes = 5×60 = 300 s 
S2 = × 
S2 = 13.333× 300 
S2 = 3999.9 = 4000 m 
 
Case – III:
 
Initial velocity = Vf = 13.3331 
Final velocity = Vi = 0 1 
Time = t = 3 minutes = 3×60 = 180 s
S3 = × t 
S3 =(+)2× 180 
S3 = .333+02× 180
S3 = 6.6665×180
S3 = 1199.97 = 1200 m
Total distance = S = S1 + S2 + S3
S = 800 + 4000 + 1200
S = 6000 m 

                                                                     

A cricket ball is hit vertically upwards and returns to the ground 6 s later. Calculate 

(i)Maximum height reached by the ball 
(ii)initial velocity of the ball (45m, 30 1)

Difficulty: Medium

Solution:     

Acceleration due to gravity = g = 101 (for upward motion)
Time to reach maximum height (one sided time) = t =62= 3 s
Velocity at maximum height = Vf = 0 1


(i)Maximum height reached by the ball S = h =?
(ii)The maximum initial velocity of the ball = =?


 Since,      =+× 
                 =×                                
                 =0(10)×3
                 =301 


Now using 3rd equation of motion


                  2aS = 22 
                  S = 222
                  S = (0)2 – (30)22×(10)
                  S = 9020
                  S = 45 m 

When brakes are applied, the speed of a train decreases from 96 1 to 48 1 in 800 m. How much further will the train move before coming to rest? (Assuming the retardation to be constant). (266.66 m)

Difficulty: Medium

Solution:

Initial velocity = =961 = 96×10001000 = 96000960001
Final velocity = =481 = 48\times 10003600 = 4800036001
Distance = S = 800 m 
Further Distance = S1 =?


First of all, we will find the value of acceleration a 


2=22
2××800 = (480003600)2 – (960003600)2 
1600a = (480003600)2 – ((2×480003600)2        (96000=2×48000)
1600a = (480003600)2((1)2(2)2)        (taking (4800036000) as common)
1600a = (480003600)2(14)
1600a = (480003600)2(3)
a = (480003600)2×31600


Now, we will find the value of further distance S2:
 = 0              ,           S2 =?
2aS = 22
2(4800036000)2 \times 31600× S1 = (0)2(4800036000)2      
S1 = (4800036000)2 \times (4800036000)2 \times 16003×2 
S1 = 16006
S2 = 266.66m 


In the above problem, find the time taken by the train to stop after the application of brakes. (80 s)

Difficulty: Medium

Solution:

by taking the data from problem 2.9:
Initial velocity = =961 = 96×10003600 =9600036001
Final velocity = =01 
a =(480003600)2 \times 316002 
time = t =?


Or    =  + at 
Or   at = 


        t = 
        t = 0480003600-(480003600) \times 11600
        t = 960003600× (360048000)2 \times  16003
        t = 2×480003600\times (360048000\times 360048000) \times 16003
        t = 2×36003×3
        t = 2×40 = 80